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Motivations
How do we develop a generalizable deep learning model for predicting kinase-

inhibitor binding affinities? 
• Kinases are highly druggable biological targets broadly implicated in biological 

disorders. 
• Developing a screening pipeline that can accurately identify kinase inhibitors will 

significantly streamline the screening of compound libraries. 
• Previous work in the Karanicolas Lab has demonstrated the need for structure-based 

ligand representations. 

Methods
• Ligand Representation: 3D Pharmacophores
• Conformers for compound are generated, aligned with closest ligand in PDB.
• The best aligned conformer is used to generate the 3D pharmacophore for 

model training
• Protein Representation: SeqVec and Onehot Encoded Representations from KLIFS 

sequences (ATP binding site). 
• SeqVec is a novel protein representation inspired by NLP model ELMo. 
• No difference between SeqVec and Onehot Enoded Representations

• Model Training
• Training was conducted on both Argonne National Lab’s GPU cluster and Google 

Colab. 

Dataset Pearson R MSE RMSE MAE CI

Bajorath 0.672 0.579 0.760 0.580 0.724

Christmann-Franck 0.531 0.918 0.958 0.746 0.668

Results

Discussion
• Our model performs comparably to others in the literature, exhibiting a 

lower MSE (RosENet: 1.24; Kdeep: 1.27). 
• Our model also displays a surprisingly high concordance index – even if our 

model is not predicting actual binding affinities, it is able to preserve the 
rank of inhibitors in its predictions. 

• Performance varies among kinases: e.g. PIM3 has Pearson Correlation of 
0.79 and CDK9 has Person Correlation of 0.51

• The Bajorath dataset contains more ligand diversity than the Christmann-
Franck dataset and is the likely cause of the performance differential. 

Future Directions
• Rebuilding the Christmann-Franck dataset, 

filtering for compounds that have close 
analogues recorded in PDB.

• Using the top few conformers instead of solely 
the top 1 conformer. 

• A transfer learning regime – first train our model 
to predict Rosetta Energies and use these 
weights as the starting point for binding affinity 
training. 

• Adding a structural kinase representation. 


