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Motivations
Accurate 3D representations are key to training effective deep learning 

models. 
• Kinases are highly druggable biological targets broadly implicated in 

biological disorders. 
• Previous work in the Karanicolas Lab has demonstrated the need for 

structure-based ligand representations. 
• However, it is unclear if these 3D structure-based representations are 

accurate representations of the ground truth. 

Methods
• We start with a curated subset of kinase-inhibitor complexes in the PDB with 

recorded binding affinity that are then standardized to pAct scores.
• Train XGBoost pipeline to predict binding affinity from energy features.
• We hypothesize that our pipeline will accurately predict pAct for models close to 

ground truth – we can then use this XGBoost pipeline to select between models 
when a PDB structure is unavailable. 

• Features used:
• Rosetta energy components
• RDKit features
• OpenEye Omega features

Pipeline Pearson R MSE

Predicting RMSD on PDB Dataset 0.250 3.231

Predicting pAct on PDB Dataset 0.671 1.041

Results

Discussion
• Our pipeline demonstrates competence on a range of tasks and is able to

recapitulate both RMSD (especially at the lower ranges) and pAct.
• The ability to recapitulate pAct from energy features is a promising sign 

that our pipeline can discriminate between kinase-inhibitor models with 
poor RMSD. 

• This is further evidenced by the fact that there is a performance decrease 
when we use the Christmann-Franck database that does not rely directly 
upon PDB structures (Pearson R: 0.354). 

Future Directions
• Using similarity scores – such as Maximum 

Common Substructure – to cluster inhibitors so 
as to ensure minimal information leakage. 

• Further filtering the data to ensure only models 
with a sufficiently small RMSD are used as 
training data

• Training on different sets of features – Rosetta 
energy components only or RDKit features only. 


