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Deep Learning and Drug Discovery

e Deep learning describes training neural networks with more than one hidden layer and is especially
suited for discovering patterns in high dimensional data.

e Models are trained by optimizing tunable parameters such as the weights and biases of neuronsin
the neural network.

e More recent work has highlighted the potential for the use of convolutional neural networks
(CNNSs) in drug discovery [1].

o  CNNs consider features invariant to location, this is makes it suited to recognizing the same chemical feature
in different parts of molecules.

[1] Ozturk H, Ozgur A, Ozkirimli E. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics. 2018; 34:821-9.



Kinases, Cancer, and Drug Discovery

e Kinases play a key role in diseases such as:
o Cancers
o Inflammatory diseases
o  Autoimmune disorders

e Kinases already have a strong record as

pharmaceuticals, with 48 drugs gaining FDA approval
[1].

[Image] “Crystal Structure of nilotnib and Abl kinase” Wikipedia. https://en.wikipedia.org/wiki/Tyrosine kinase inhibitor
[1] Roskoski R, Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol Res. 2020; 152:104609.




The Challenges of Kinase Inhibitor Discovery
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[1] Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DV, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov.
2011;10:188-95.



Virtual Screening: A Possible Solution?

e Inlight of the challenges posed by experimental screening of kinase libraries, do in silico deep
learning techniques provide a viable alternative to in vitro screens? Maybe...

Goal: Train a model on a set of experimentally tested kinase inhibitors then use it to search synthetically
accessible chemical space for previously unknown kinase inhibitors.

e  Thus our model must perform well under these conditions: where the model is asked to make
predictions on previously unseen inhibitors.

Motivating Question: Do current models perform well in settings where they are asked to predict the
binding affinities of previously unseen inhibitors?



Methods: Overview

Motivating Question: Do current models perform well in settings where they are asked to predict the
binding affinities of previously unseen inhibitors?

e Toanswer the question...
o  Wedesign adeep learning model comparable to those in the literature
o  Wetest our model on previously unseen inhibitors



Methods: Datasets and Processing
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Methods: Datasets and Processing

e Data points with kinase mutants and SMILES strings >90 characters are discarded, protein kinase
information converted to KLIFS sequences [1].

e Anastassiadis Dataset: Convert bioactivity labels to pIC50 using Hill-slope of 1

e Elkins Dataset: Remove data points with Kd with <0 and convert to pKd

[1] van Linden OP, Kooistra AJ, Leurs R, de Esch 1J, de Graaf C. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem. 2014; 57:249-77



Methods: Datasets and Processing
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Methods: Neural Net Model

e Embedding layer transforms KLIFS and SMILES information into
dense vectors of fixed length

e CNN blocks to extract features from SMILES strings and KLIFS
sequences

e Dense network for multivariable regression to predict binding
affinity

e Hyperparameters optimized with systematic tuning optimizing for
best performance on test-set data
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Results: CNN Model
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Results: CNN Model
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Results: CNN Model

e Our standard split model performs at similar levels to existing models in the literature with a
concordance indices and correlation coefficients of about 0.8 and similar mean squared error
(MSE).

e  Our standard split model outperforms DeepDTA on the Davis set, the common dataset between our

experiments
o  Higher concordance index: 0.896 vs.0.878
o MSE:0.177 vs.0.261

e Performance deteriorates significantly on the Split by Inhibitor model, exhibiting lower correlation
coefficients and concordance indexes and higher MSE on all four datasets, indicating our model is
unable to generalize to previously unseen information.



Methods: MCS-Based Experiments

e We use the maximum common substructure (MCS) tool in RDKit to calculate similarity of
inhibitors with each other.
e Weuse this data to run two experiments:

o  Onewhere we test if the presence of closely related inhibitors in the training set affects our model’s
performance on a given test set compound.

o  Another where we test if our model’s predictive capacity arises from it transferring training labels from the
most closely related training set inhibitor.



Results: MCS Correlation Experiment
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Results: MCS Correlation Experiment

e We demonstrate that the correlation between an individual inhibitors’ R value and the MCS similarity
of the closest training set compound is statistically significant (p<0.001) using the Wilcoxon Rank Sum
test.

e Theseresults indicate that our model suffers from information leakage by using training labels of
closely related inhibitors to make predictions for test set compounds.



Results: MCS Label Transfer Experiment
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Results: MCS Label Transfer Experiment

e Onaverage, our model that solely transfers training labels from the closest training set inhibitor
performs similarly to our Split by Inhibitor model.

e Onthe Davis set, our label transfer model outperforms the Split by Inhibitor model
o  HigherCl:0.711 vs.0.694
o  Higher correlation coefficient: 0.419 vs. 0.409

e Near-equivalent performance to the Split by Inhibitor model indicates that our machine learning
model is not doing much more than transferring the training labels of the closest chemical analogue in
the training set.



Methods: Junk SMILES Experiment

e Wereplace SMILES strings with random character strings that are unique to each inhibitor.

e We use these random strings in place of SMILES strings when training our CNN model.
o  This allows our model to differentiate between different inhibitors without any intuition about chemical
structure.
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Results: Junk SMILES

e  Our Junk SMILES model performs at similar levels to our Standard Split model with a concordance
indices and correlation coefficients of about 0.8 and similar MSE.

e Insome cases, our Junk SMILES model outperforms our Standard Split model:
o Anastassiadis Dataset: Better Cl of 0.768 vs. 0.763
o Elkins Dataset: Lower MSE of 0.145 vs. 0.147

e The high performance of our Junk SMILES model where the CNN model is given meaningless
strings in place of the inhibitors’ information indicates that our model is memorizing kinase

phylogeny.



Discussion: Summary

e Whentrained in a similar way to existing models, our model performs competitively with those in
the literature.
e Performance significantly deteriorates when our model is trained on the Split by Inhibitor scheme,
the way we would ideally apply such models in the real world.
o In the case of the Davis set, Cl drops from 0.896 to 0.694.
e Whenunable to use memorized kinase phylogeny to make predictions, our model searches the
training set for the most closely related inhibitor and copies the binding affinity labels.



Discussion: Implications

e Most existing models are trained with data randomly sorted into training, test, and validation sets
indicating they may not be as predictive as once thought.

e SMILES strings may not be sufficiently meaningful representations of inhibitors under the
constraints of current dataset sizes -- 3D representations may be needed.

e Evenwhen trained on the Split by Inhibitor scheme, information leakage still arises.



Further Work

e Learning from this paper -- benchmarking models (eg. 3D CNN project) on Split by Inhibitor
scheme

e Examining on other types of similarity measures

e Finding away to minimize information leakage from closely related inhibitors in the training set.
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