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Convolutions and Computer
Vision



A Task in Computer Vision
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A Task in Computer Vision – Restated

Our eyes and brain together form a function R32ˆ32ˆ3 Ñ r10s taking
an image in CIFAR-10 to its class.

Question
Can we find an approximator (perhaps a deep neural network N )
R32ˆ32ˆ3 Ñ r10s such that it correctly takes an image in CIFAR-10 to
its class?
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Convolutions in Computer Vision

Residual networks, that use convolutional layers, achieve industry
leading performance on the CIFAR-10 data set [3].
Figure from [2].
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Convolutions in Computer Vision

Let us recall the mathematics behind convolutional layers [9].

• We have a function on our input space of images.
• We feed translated copies of an image to the function.
• We store the function output for each translation.
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Equivariance of Functions



Convolutional Layers as Equivariant

Figure from [10].
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Equivariance of Functions

Definition (Equivariance) [7]
Let G be a finite group and f : Rn Ñ Rm where G ýRn and G ýRm.
Suppose that φ : G ãÑ Sn and ψ : G ãÑ Sm are given. f is
G-equivariant if and only if fpφpgq ¨ x⃗q “ ψpgq ¨ fp⃗xq for all g P G and
any x⃗ P Rn.
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Equivariance of Functions

Example (Image Sharpening)
Let f : Rn Ñ Rn be a function that sharpens images and
τα : Rn Ñ Rn for tταuαPA be the group of 90˝ rotations under
composition. f is in fact invariant under the group ptταuαPA, ˝q.
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Equivariance and CNNs

The translation equivariance of CNNs has been instrumental
in enabling this performance [over traditional deep neural
networks]. However, the vulnerability of CNNs to transfor-
mations such as rotation and scaling remains a challenge,
since standard CNNs do not learn features that are equivari-
ant with respect to these transformations.

Quote from [5].
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Equivariance in Images

Figure from [8].
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The Group p4m

The set of symmetries we are looking at is the wallpaper group p4m.

Figure from [4].
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Equivariance in Images

We want to take advantage of the p4m structure of images in our
neural network classifier.

Desideratum
If we have N : R32ˆ32ˆ3 Ñ r10s a neural network classifier of
CIFAR-10 images, we want our convolutional layers to be p4m
equivariant.
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Equivariance of Neural Networks



Equivariance and Convolution

Definition (G-Convolution)
Let f,g : G Ñ C and G a compact group. The convolution of f with g

pf ˚ gqpuq “

ż

G
fpuv´1qgpvqdµpvq

where the integration is with respect to the Haar measure µ.
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Equivariance and Convolution

Theorem (Kondor and Trivedi) [6]
A neural network is equivariant to the action of a compact group G
if and only if each layer of the neural network is a G-convolution.

The proof is quite technical, requiring knowledge of Fourier analysis
on compact groups as well as representation theory.
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Universal Approximation in Neural Networks

Denote
řn

pσq the space of neural networks from Rn Ñ R for σ an
activation function.

Theorem (Cybenko)
Let K Ă Rn be compact and f : K Ñ R continuous. There exists
N P

řn
pσq such that

}N p⃗xq ´ fp⃗xq}8 ă ϵ

for all ϵ P Rą0 and x⃗ P K.

This generalizes easily to find neural network approximations
N P

řn,m
pσq approximating f : K Ñ Rm.
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Appproximation of Equivariant Functions?

Question
Let f be an equivariant function. Does there exist
N P “Some Space of Neural Networks” such that }N ´ f}8 ă ϵ?
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A Theorem of Sannai, et. al.

Theorem (Sannai, et. al.) [7]
Let G be a finite group which is a subgroup of Sn. Let K Ă Rn be
compact and stable for the corresponding G-action in Rn. Then for
any f : K Ñ Rm by x⃗ ÞÑ pf1p⃗xq, . . . , fmp⃗xqq which is continuous and
G-equivariant and any ϵ P Rą0 there exists some equivariant neural
network NEquiv

G : K Ñ Rm such that }f´ NEquiv
G }8 ă ϵ.
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Proof

• Show that an Sn equivariant function F : Rn Ñ Rm is actually
pf, f ˝ p1 2q, . . . , f ˝ p1 nqq for f a Stabp1q invariant function.

• So F is really the pointwise composition

F “ pf, . . . , fq ˝ pε, p1 2q, . . . , p1 nqq.

• We know that pf, . . . , fq can be approximated by a neural network
– since invariant functions can be approximated by neural
networks.
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Proof

• The crux of the proof is showing pε, p1 2q, . . . , p1 nqq : Rn Ñ Rnˆn

can be approximated by neural networks as well.
• Construct a group action ý: Sn ˆ Rnˆn Ñ Rnˆn ùñ

σ “ σ̃ip1 σ´1
i piqq where σ P Sn, σ̃i P Stabp1q where σ̃i is unique.

• pε, p1 2q, . . . , p1 nqq : Rn Ñ Rnˆn, with some algebra, can be
approximated by a neural network with Stabp1q invariant layers
and is equivariant under Sn.
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Equivariant Neural Networks “In the Wild”

Previous results in the literature show the superior performance of
group-equivariant CNNs in image classification [1].

Which is behavior I have observed in my testing.

Metric p4m-CNN CNN
Cross-Entropy Loss 0.679 0.832

Classification Accuracy 77% 70%
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Conclusion



Summary

Here are some takeaways:

• CNNs are equivariant under Z2, G-equivariant CNNs are
equivariant under a finite group G.

• G-equivariant neural networks, like (convolutional) neural
networks, are universal approximators.
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Summary

Here are some takeaways:

• There are packages to implement G-convolutions in PyTorch
and TensorFlow.

• G-convolutions provide significant performance improvements
over CNNs.

• G-equivariant neural networks are computationally expensive to
implement („ 8 times the memory).
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Questions?
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