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Convolutions and Computer
Vision



A Task in Computer Vision
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A Task in Computer Vision — Restated

Our eyes and brain together form a function R32x32x3 — [10] taking
an image in CIFAR-10 to its class.

Question

Can we find an approximator (perhaps a deep neural network A)
R32x32x3 — [10] such that it correctly takes an image in CIFAR-10 to
its class?
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Convolutions in Computer Vision

Residual networks, that use convolutional layers, achieve industry
leading performance on the CIFAR-10 data set [3].

Figure from [2]
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Convolutions in Computer Vision

http:(icolah.github.

Let us recall the mathematics behind convolutional layers [9].

- We have a function on our input space of images.
- We feed translated copies of an image to the function.
- We store the function output for each translation.

Wern Juin Gabriel Ong (MPI-MiS & Bowdoin) 5



Equivariance of Functions



Convolutional Layers as Equivariant
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Figure from [10].
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Equivariance of Functions

Definition (Equivariance) [7]

Let G be a finite group and f: R" — R™ where G & R" and G & R™.
Suppose that ¢ : G — S, and v : G — Sy, are given. fis
G-equivariant if and only if f(¢(g) - X) = ¥(g) - f(X) forall g € G and

any X e R".
R I R™ T i f(F)
| | | |
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Equivariance of Functions

Example (Image Sharpening)

Let f: R" — R" be a function that sharpens images and

To - R" — R" for {7, }aea be the group of 90° rotations under
composition. fis in fact invariant under the group ({7 }aea, ©)-
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Equivariance and CNNs

The translation equivariance of CNNs has been instrumental
in enabling this performance [over traditional deep neural
networks]. However, the vulnerability of CNNs to transfor-
mations such as rotation and scaling remains a challenge,
since standard CNNs do not learn features that are equivari-
ant with respect to these transformations.

Quote from [5]
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Equivariance in Images

Figure from [8].
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The Group p4m

The set of symmetries we are looking at is the wallpaper group p4m.
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Figure from [4].
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Equivariance in Images

We want to take advantage of the p4m structure of images in our
neural network classifier.

Desideratum

If we have N : R3x32x3 —, [10] a neural network classifier of
CIFAR-10 images, we want our convolutional layers to be p4m
equivariant.
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Equivariance of Neural Networks




Equivariance and Convolution

Definition (G-Convolution)
Letf,g: G — C and G a compact group. The convolution of f with g

(F» g)(u ffuv‘ dpu(v)

where the integration is with respect to the Haar measure p.
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Equivariance and Convolution

Theorem (Kondor and Trivedi) [6]

A neural network is equivariant to the action of a compact group G
if and only if each layer of the neural network is a G-convolution.

The proof is quite technical, requiring knowledge of Fourier analysis
on compact groups as well as representation theory.
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Universal Approximation in Neural Networks

Denote 3" (o) the space of neural networks from R” — R for o an
activation function.

Theorem (Cybenko)

Let K< R" be compact and f: K — R continuous. There exists
N e >"(o) such that

INGK) = fX)]oo < €

forallee R.y and X € K.

This generalizes easily to find neural network approximations
N e X" (s) approximating f: K — R™.
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Appproximation of Equivariant Functions?

Question
Let f be an equivariant function. Does there exist
N € “Some Space of Neural Networks” such that [N — fo < €?
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A Theorem of Sannai, et. al.

Theorem (Sannai, et. al.) [7]

Let G be a finite group which is a subgroup of S,. Let K < R" be
compact and stable for the corresponding G-action in R". Then for
any f: K— R™ by X — (f1(X),...,fm(X)) which is continuous and
G-equivariant and any e € R. there exists some equivariant neural
network NZ9™ : K — R™ such that [[f — NZ"Y|y, < e.
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- Show that an S, equivariant function F: R"” — R™ is actually
(f,fo(12),...,fo(1n)) for fa Stab(1) invariant function.

- So Fis really the pointwise composition

F= (P o6 (12,0, (1)),

- We know that (f,...,f) can be approximated by a neural network
- since invariant functions can be approximated by neural
networks.
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- The crux of the proof is showing (e, (12),...,(1n)) : R" — R"*"
can be approximated by neural networks as well.

- Construct a group action &: S, x R™*" — RN =
o = 5i(107'(i)) where o € Sy, 5; € Stab(1) where ; is unique.

- (6,(12),...,(1n)) : R" — R"™" with some algebra, can be

approximated by a neural network with Stab(1) invariant layers
and is equivariant under S,,. [
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uivariant Neural Networks “In Wild”

Previous results in the literature show the superior performance of
group-equivariant CNNs in image classification [1].

Network G CIFARIO CIFARIO+ Param.
All-CNN | 72 9.44 8.86 1.37M
p4 8.84 7.67 1.37M

pdm 7459 7.04 1.22M

ResNetdd | 72 9.45 5.61 2.64M
pdm 6.46 4.94 2.62M

Table 2. Comparison of conventional (i.e. Z?), p4 and p4m CNNs
on CIFAR10 and augmented CIFAR10+. Test set error rates and
number of parameters are reported.

Which is behavior | have observed in my testing.

Metric | p4m-CNN | CNN
Cross-Entropy Loss 0.679 0.832
Classification Accuracy 77% 70%
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Conclusion




Here are some takeaways:

- CNNs are equivariant under Z?, G-equivariant CNNs are
equivariant under a finite group G.

- G-equivariant neural networks, like (convolutional) neural
networks, are universal approximators.
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Here are some takeaways:
- There are packages to implement G-convolutions in PyTorch
and TensorFlow.

- G-convolutions provide significant performance improvements
over CNNs.

- G-equivariant neural networks are computationally expensive to
implement (~ 8 times the memory).

Wern Juin Gabriel Ong (MPI-MiS & Bowdoin) 22



Wern Juin Gabriel Ong (MPI-MiS & Bowdoin)

Questions?
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