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Learning Discriminants

Consider a polynomial system with 0-dimensional solution set. The discriminant

divides the parameter space into open subsets on which the number of real solu-

tions is constant. We study the discriminant as the decision boundary of a classifier

that, given a point of the parameter space, returns the number of real roots.

Learning the Discriminant

1. Generate training data: points of the parameter space labeled by the number

of real solutions.

2. Train a neural network to classify the number of real solutions.

3. Sample points from the decision boundary of the neural network.

4. Interpolate polynomials of varying degrees through the sampled points.

5. Choose the polynomial of the lowest degree where the error starts to plateau.

Learning the Quadratic Discriminant

Aquadratic polynomial f (x) = x2+ax+b has discriminant b = 0.25a2. Ourmethod

recovers b = (2.49949210×10−1)a2 − (1.82254776×10−6)a+(1.47289991×10)−5, by

interpolating a degree two polynomial through points on the decision boundary.

Figure 1. While both the discriminant are defined by the vanishing loci of polynomials F (a, b), our plots display
z = F (a, b). (Left) The quadratic discriminant z = 0.25a2 − b (orange) and boundary approximator for a

semi-quadratic network z = F (a, b) (blue). (Right) The quadratic discriminant z = 0.25a2 − b (orange) and boundary

approximator for a quadratic-SoftMax network (blue), with SoftMax activation in the final layer and quadratic

activations elsewhere. Note that our (approximate) discriminant curves are defined by the intersection of these

surfaces with z = 0 and partitions the a, b-parameter space into two cells where the number of real solutions is

constant.

Observe that in the case of SoftMax activation in the final layer Figure 1 (Right),

it is difficult to sample points as described in step 3 as the root-finding algorithm

does not converge unless it starts close to the discriminant curve.

Polynomial Neural Networks

A polynomial neural network Rd0 → Rd1 → · · · → Rdk has depth k and width

d1 = · · · = dk−1, where each Rdi−1 → Rdi is a function σi(Wx + b) where

x ∈ Rdi−1, W ∈ Rdi×di−1, b ∈ Rdi and σi is a pointwise m-th power function (ie.

(xi)i∈[n] 7→ (xm
i )i∈[n]). We consider polynomial neural networks where σi is either

the pointwise square function or the identity function. A quadratic neural net-

work has σi the pointwise squaring function for all iwhile a semi-quadratic neural

network has σ1 the pointwise squaring function and σi = id for i > 1.

The Discriminant and (Semi)-Quadratic Neural Networks

In step 3, we recover points on the decision boundary. We expect that we will be

able to recover the discriminant when it lies in the function class of the boundary

approximator, which we define to be the function class of the polynomial R2 → R
defined by taking the inner product of the network output in with (1, −1).

Theorem (Discriminants in Function Classes of Polynomial Neural Networks)

The containment of the quadratic discriminant in the function class of the bound-

ary approximator for a neural network with a given architecture is as follows:

Figure 2. Containment of the quadratic discriminant in quadratic and semi-quadratic neural networks.

Width 0 Depth 1 Quadratic Networks

Awidth 0 depth 1 quadratic network is determined by six parameters, 4 weights

and 2 biases:

W =
[
w11 w12
w21 w22

]
, b =

[
b1
b2

]

determines the plane conic curve (w11a + w12b + b1)2 − (w21a + w22b + b2)2. The
map from the set of the parameters to the set of coefficients of the plane conic
is given by

(w11, w12, w21, w22, b1, b2) 7→ (w2
11 − w2

21, 2w11w12 − 2w21w22, w2
12 − w2

22, 2w11b1 − 2w21b2, 2w12b1 − 2w22b2, b2
1 − b2

2)

with finite (possibly empty) fibers.

Proposition (Fiber Over The Discriminant)

The fiber over the discriminant is empty, there do not exist parameters W, b such
that (1, −1)TSq (Wx + b) = 0.25a2 − b, however the boundary approximator con-
verges to a point with a flat loss landscape.

Figure 3. Loss landscape of width 0 quadratic network with respect to pairs of parameters w12, w21 and b1, b2.
Observe that the low error indicates that our quadratic network converges to a point of good fit.
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