Neural Networks and Discriminant Loci of Parameterized Polynomial Systems: First Examples

Wern Juin Gabriel Ong ${ }^{1}$ Anna Seigal²

Learning Discriminants

Consider a polynomial system with 0-dimensional solution set. The discriminant divides the parameter space into open subsets on which the number of real solutions is constant. We study the discriminant as the decision boundary of a classifier that, given a point of the parameter space, returns the number of real roots.

Learning the Discriminant

1. Generate training data: points of the parameter space labeled by the number of real solutions
2. Train a neural network to classify the number of real solutions,
3. Sample points from the decision boundary of the neural network.
4. Interpolate polynomials of varying degrees through the sampled points.
5. Choose the polynomial of the lowest degree where the error starts to plateau

Learning the Quadratic Discriminant
A quadratic polynomial $f(x)=x^{2}+a x+b$ has discriminant $b=0.25 a^{2}$. Our method recovers $b=\left(2.49949210 \times 10^{-1}\right) a^{2}-\left(1.82254776 \times 10^{-6}\right) a+(1.47289991 \times 10)^{-5}$, by interpolating a degree two polynomial through points on the decision boundary.

Figure 1 . While both the discriminant are defined by the vanishing loci of polynomials $F(a, b)$, our plots display
$z=F(a, b)$. (Left) The

Observe that in the case of SoftMax activation in the final layer Figure 1 (Right), it is difficult to sample points as described in step 3 as the root-finding algorithm does not converge unless it starts close to the discriminant curve.

Polynomial Neural Networks
A polynomial neural network $\mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{1}} \rightarrow \cdots \rightarrow \mathbb{R}^{d_{k}}$ has depth k and width $d_{1}=\cdots=d_{k-1}$, where each $\mathbb{R}^{d_{i-1}} \rightarrow \mathbb{R}^{d_{i}}$ is a function $\sigma_{i}(W \mathbf{x}+b)$ where $x \in \mathbb{R}^{d_{i-1}}, W \in \mathbb{R}^{d_{i} \times d_{i-1}}, b \in \mathbb{R}^{d_{i}}$ and σ_{i} is a pointwise m-th power function (ie. $\left.\left(x_{i}\right)_{i \in[n]} \mapsto\left(x_{i}^{m}\right)_{i \in[n]}\right)$. We consider polynomial neural networks where σ_{i} is either the pointwise square function or the identity function. A quadratic neural network has σ_{i} the pointwise squaring function for all i while a semi-quadratic neural network has σ_{1} the pointwise squaring function and $\sigma_{i}=$ id for $i>1$.

> The Discriminant and (Semi)-Quadratic Neural Networks

In step 3, we recover points on the decision boundary. We expect that we will be able to recover the discriminant when it lies in the function class of the boundary approximator, which we define to be the function class of the polynomial $\mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by taking the inner product of the network output in with $(1,-1)$.

Theorem (Discriminants in Function Classes of Polynomial Neural Networks)

The containment of the quadratic discriminant in the function class of the boundary approximator for a neural network with a given architecture is as follows:

Width 0 Depth 1 Quadratic Networks

A width 0 depth 1 quadratic network is determined by six parameters, 4 weights and 2 biases:

$$
W=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right], b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

determines the plane conic curve $\left(w_{11} a+w_{12} b+b_{1}\right)^{2}-\left(w_{21} a+w_{22} b+b_{2}\right)^{2}$. The map from the set of the parameters to the set of coefficients of the plane conic is given by

$$
\left(w_{11}, w_{12}, w_{21}, w_{22}, b_{1}, b_{2}\right) \mapsto\left(w_{11}^{2}-w_{21}^{2}, 2 w_{11} w_{12}-2 w_{21} w_{22}, w_{12}^{2}-w_{22}^{2}, 2 w_{11} b_{1}-2 w_{21} b_{2}, 2 w_{12} b_{1}-2 w_{22} b_{2}, b_{1}^{2}-b_{2}^{2}\right)
$$

with finite (possibly empty) fibers

Proposition (Fiber Over The Discriminant)

The fiber over the discriminant is empty, there do not exist parameters W, b such that $(1,-1)^{T} \mathrm{Sq}(W \mathbf{x}+b)=0.25 a^{2}-b$, however the boundary approximator converges to a point with a flat loss landscape.

Figure 3 . Loss landscape of width 0 quadratic network with respect to pairs of parameters w_{12}, w_{21} and b_{1}, b_{2} Observe that the low error indicates that our quadratic network converges to a point of good fit,

Reference

