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Brouwer Degrees: Ordinary and Motivic



The Classical Brouwer Degree

Definition (Brouwer Degree)
Let f : Cn Ñ Cn be a polynomial map. The Brouwer degree of f is given by

ÿ

xPf´1p0q

indxf “
ÿ

xPf´1p0q

det pJacpfqpxqq .

A tool for classical enumerative geometry:

Theorem (Poincaré-Hopf)
Let V be an vector bundle over a smooth closed oriented manifold X. If σ is
any section of V then

epVq “
ÿ

xPσ´1p0q

indA
1

x σ

and is independent of σ.

Example
For the 27 lines on the cubic surface, we compute the Euler class of Sym3S_.
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Algebraic Geometry is Not Enough

Over non algebraically closed fields, these enumerative counts fail to be
independent of section.

Example
Sections of the line bundle OA1R

p2q tell us about the vanishing locus of
quadratic equations.

Remark: While the naïve count is not invariant, a signed count is.
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The A1-Brouwer Degree

Working with motivic spaces instead of schemes captures field-specific
arithmetic information.

Theorem (Morel)
Let k be a field of characteristic not 2 and f : An

k Ñ An
k be a polynomial map

with n ě 2. f admits a well-defined degree valued in the Grothendieck-Witt
ring GWpkq of non-degenerate symmetric bilinear forms.

• Over k “ C, the rank of the form recovers the classical Brouwer degree.
• Over other fields, the invariants of the symmetric bilinear form capture
field-specific information.
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Enumerative Geometry over Non-Closed Fields: Theory

Theorem (Bachmann-Wickelgren, Kass-Wickelgren)
Let V be an oriented algebraic vector bundle over a scheme X smooth and
proper over Specpkq with charpkq ‰ 2. If σ is any section of V then

nA
1
pVq “

ÿ

xPσ´1p0q

indA
1

x σ

and is independent of σ.

Upshot: This recovers Schubert’s “invariance of number” over non
algebraically closed fields.
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Enumerative Geometry over Non-Closed Fields: Praxis

Previously, methods for computing these degrees where largely ad-hoc and
fairly restrictive.

There are explicit commutative-algebraic formulae for computing these
A1-Brouwer degrees.

Theorem (Brazelton-McKean-Pauli)
Let k be a field of characteristic not 2 and f : An

k Ñ An
k be a polynomial

map. The A1-degree of f can be computed using the multivariate Bézoutian.

Remark: These multivariate Bézoutians can be thought of as a formal
Jacobian matrix.
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The A1BrouwerDegrees Package

The package A1BrouwerDegrees provides software to perform basic
operations on the Grothendieck-Witt ring GWpkq and compute these
enriched enumerative counts.

The package was included in release 1.23 of Macaulay2 and can be
imported as follows:

i1 : loadPackage "A1BrouwerDegrees"

o1 = A1BrouwerDegrees

o1 : Package

Note that a number of method names will be changed in the next release of the package to better adhere to Macaulay2 style

conventions.
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Computing in the Grothendieck-Witt
Ring



The Grothendieck-Witt Ring

Definition (Grothendieck-Witt Ring)
Let k be a field of characteristic not 2. The Grothendieck-Witt ring GWpkq is
the set of isomorphism classes of symmetric bilinear forms under ‘ and b

group completed with respect to ‘.

The Grothendieck-Witt ring is additively generated by xay for a P kˆ{pkˆq2.

This is equivalent to the fact that every symmetric matrix is congruent to a
diagonal matrix.
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The Grothendieck-Witt Ring in Macaulay2

We define a Grothendieck-Witt class by its underlying Gram matrix with the
gwClass constructor:

i2 : M = matrix(QQ, {{1, 2}, {2, 5}})

o2 = | 1 2 |
| 2 5 |

2 2
o2 : Matrix QQ <-- QQ

i3 : alpha = gwClass(M)

o3 = GrothendieckWittClass{cache => CacheTable{}}
matrix => | 1 2 |

| 2 5 |

o3 : GrothendieckWittClass
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Arithmetic in the Grothendieck-Witt Ring

We can add and multiply classes in the Grothendieck-Witt ring.

i4 : N = matrix(QQ, {{7, 3}, {3, 2}});

2 2
o4 : Matrix QQ <-- QQ

i5 : beta = gwClass(N);

i6 : gamma = gwAdd(alpha, beta)

o6 = GrothendieckWittClass{cache => CacheTable{}}
matrix => | 1 2 0 0 |

| 2 5 0 0 |
| 0 0 7 3 |
| 0 0 3 2 |

o6 : GrothendieckWittClass
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Simplifying Representatives

By Sylvester’s law of inertia, every symmetric bilinear form is isomorphic to a
diagonal one.

i7 : P = matrix(GF(19), {{1, 5, 17, 8}, {5, 3, 9, 4},
{17, 9, 13, 2}, {8, 4, 2, 6}});

4 4
o7 : Matrix (GF 19) <-- (GF 19)

i8 : delta = gwClass(P);

i9 : diagonalClass(delta)

o9 = GrothendieckWittClass{cache => CacheTable{} }
matrix => | 1 0 0 0 |

| 0 1 0 0 |
| 0 0 1 0 |
| 0 0 0 -1 |

o9 : GrothendieckWittClass
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Isomorphism of Forms

We can also read off the decomposition of a quadratic form as a sum of
hyperbolic forms and its anisotropic part.

i10 : sumDecompositionString(delta)

o10 = 1H+ <1>+ <6>

Note that this is the same as the decomposition as the form with diagonal
entries 1, 1, 1, -1 we computed previously since

i11 : A = diagonalForm(GF(19), (1, 1, 1, -1));

i12 : B = diagonalForm(GF(19), (1, -1, 1, 6));

i13 : gwIsomorphic(A, B)

o13 = true
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Arithmetic of Forms

We can also compute a number of arithmetic invariants of symmetric
bilinear forms such as its signature

i14 : T = matrix(QQ, {{1, 7, 2}, {7, 9, 3}, {2, 3, 5}});

3 3
o14 : Matrix QQ <-- QQ

i15 : epsilon = gwClass(T);

i15 : signature(epsilon)

o15 = 1

and its Hasse-Witt invariant with respect to a prime p.

i16 : HasseWittInvariant(epsilon, 5)

o16 = 1
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Enumerative Geometry: Degrees and
Quadratic Forms



Lines on a Smooth Cubic Surface

We can compute the number of lines on a cubic surface by taking sections of
Sym3S_.

Theorem (Kass-Wickelgren)
Let k be a field of characteristic not two and X Ď P3k a smooth cubic surface.
Then X contains 15x1y ` 12x´1y lines.

Remark
Over R quadratic forms are classified by rank and signature and
15x1y ` 12x´1y has signature 3, recovering a result of Segre that the
difference of the number of hyperbolic lines (ie. type x1y) and elliptic lines
(ie. type x´1y) is 3.
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Computing the Lines on a Smooth Cubic Surface

The A1-Euler number of Sym3S_ is the A1-degree of sections over an affine
patch of GQp1, 3q. Let X “ Vpx30 ` x31 ` x32 ` x33q Ď P3.

i17 : R = QQ[y_1,y_2,y_3,y_4];

i18 : f = {y_1^3 + y_3^3 + 1,
3*y_1^2*y_2 + 3*y_3^2*y_4,
3*y_1*y_2^2 + 3*y_3*y_4^2,
y_2^3 + y_4^3 + 1};

i19 : alpha = globalA1Degree(f);

i20 : sumDecompositionString(alpha)

o20 = 8H+ <1>+ <1>

Remark
This is a form of rank 18, reflecting the number of lines defined by points
on this chart of GQp1, 3q. Summing over different charts will yield the
desired rank 27 form.
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Local Geometry for the Lines on a Cubic Surface

We can compute a primary decomposition of the ideal defined by the
equations of f and consider the local A1-degree of f at this point.

i21 : I = (minimalPrimes ideal f)_0

o21 = ideal (y , y + 1, y + 1, y )
4 3 2 1

o21 : Ideal of R

i22 : beta = localA1Degree(f, I);

i23 : sumDecompositionString beta

o23 = <1>
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A Geometric Resultant for Lines on a Cubic Surface

From work of Kass-Wickelgren, the local index of a line on a cubic surface is
determined by a certain resultant.

i11 : S = QQ[z_1, z_2][z_3, z_4];

i12 : F = (z_1 + z_4)^3 + (z_2 + z_3)^3 - z_3^3 - z_4^3;

i13 : g1 = sub(diff(z_1, F), {z_1 => 0, z_2 => 0});

i14 : g2 = sub(diff(z_2, F), {z_1 => 0, z_2 => 0});

i16 : line_type = diagonalForm(QQ, lift(resultant {g1,g2}, QQ))

o16 = GrothendieckWittClass{cache => CacheTable{}}
matrix => | 81 |

o16 : GrothendieckWittClass

i17 : gwIsomorphic(line_type, beta)

o17 = true
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Takeaways

• A1-enumerative geometry as an enhancement of classical enumerative
geometry over C.

• Key step of computing A1 degrees of sections is implemented in
Macaulay2.

• Manipulations of quadratic forms in the Grothendieck-Witt ring.
• Future improvements:

• Traces when the preimage is not k-rational.
• Unstable A1-degrees, tropical enumerative geometry, ...
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Thank You. Questions?
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A1-Milnor Numbers of Singularities

We consider the A2 cuspidal singularity defined by Vpx2 ` y3q Ď A2
F32003 .

i18 : S = GF(32003)[x,y];

i19 : G = x^2 + y^3;

i20 : beta = globalA1Degree({diff(x, G), diff(y, G)});

i21 : sumDecompositionString(beta)

o21 = 1H

The rank of this form recovers the classical Milnor number of the cusp, and
records that the the cusp bifurcates into two nodes.
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Comparing A1-Milnor Numbers of Singularities

On the other hand, we can compute the A1-Milnor number of a node and
show that the cusp is not isomorphic to the node.

i22 : H = x^2 + y^2;

i23 : nodeDeg = globalA1Degree({diff(x, H), diff(y, H)})

o23 = GrothendieckWittClass{cache => CacheTable{}}
matrix => | 4 |

o23 : GrothendieckWittClass

i24 : gwIsomorphic(nodeDeg, hyperbolicForm(GF(32003)))

o24 = false
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