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1. Lecture 1 – 17th October 2025

It is generally observed that there is a duality between geometry and algebra.
Consider the following examples:

(1) (Gelfand-Naimark Duality) The category of complex Hausdorff spaces and
commutative Banach C∗-algebras are antiequivalent – the duality takes a
compact Hausdorff space X to Cont(X,C) the ring of continuous C-valued
functions on it, and conversely a commutative Banach C∗-algebra to Hom(A,C).

(2) (Stone Duality) The category of totally disconnected Hausdorff spaces and
Boolean algebras are antiequivalent – the duality takes a totally disconnected
Hausdorff space X to Cont(X,F2), and conversely a Boolean algebra A to
its Zariski spectrum Spec(A) which is equivalent to Hom(A,F2).

(3) (Classical Algebraic Geometry) Let k be an algebraically closed field. The
category of affine k-varieties and integral k-algebras of finite type are antiequiv-
alent – the duality takes an affine k-variety X to its ring of regular functions
OX , and conversely an integral finite type k-algebra A to its maximal spec-
trum mSpec(A).

(4) (Scheme Theory) The category of affine schemes and commutative rings are
antiequivalent – the duality takes an affine scheme X to its ring of global
secitions Γ(X,OX), and conversely a commutative ring A to its Zariski spec-
trum Spec(A).

Already points (3) and (4) suggest defects to the theory – we often want to consider
all k-varieties, or all schemes, which the algebra fails to capture. This fails even in
simple examples.

Example 1.1. Let k be a field. Γ(P1
k,OP1

k
) = k and Γ(Spec(k),OSpec(k)) = k so

the algebra-side of the dictionary is unable to distinguish between P1
k and a point

Spec(k).

Observe that the category of schemes is obtained by gluing, or formally adjoining
colimits, to affine schemes. In fact, the duality of (4) can be extended to the following
schema:

(1.1) Sch Aff CRing
adjoining colimits formally dual

And, in more modern words, the adjoining of these colimits can be phrased in
terms of taking sheaves of sets with respect to some Grothendieck topology on Aff
– or, equivalently, CRing. Namely, there is an equivalence of categories between the
category of schemes and the category of locally representable sheaves of sets on Aff
in the Zariski topology.

The theory of moduli in classical algebraic geometry already leads to an enhance-
ment of the above schema. Looked at with the correct lens, we ought seek to capture
not just an algebro-geometric object itself, but also its automorphisms. This leads
us to the theory of stacks, which is obtained as follows:

(1.2) AlgStk Aff CRing
sheaves of groupoids formally dual
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here taking AlgStk to be the category of all sheaves of groupoids with respect to,
say, the fpqc topology on Aff, within which we can isolate the categories of Deligne-
Mumford and Artin stacks as those satisfiying additional representability-type con-
ditions. As both this and the previous example illustrate, the specification of a
Grothendieck topology is the prescription of a gluing where we identify the colimits
that we want to see as identical. More generally, we can think of geometric objects
as objects of a certain topos on a site formally dual to certain algebraic objects.

In some sense, this perspective of geometric objects as objects of a topos is better
than that of looking at the geometric objects themselves.

Example 1.2. Let G be a group. BG = [∗/G] is nontrivial as an algebraic stack,
but its underlying topological space is a point.

The preceding example already leads to an interesting example of a duality be-
tween our new sense of geometry and categories.

Example 1.3 (Tannaka Duality). Let k be an algebraically closed field. There is an
equivalence of categories between classifying spaces of affine group schemes over k
and Tannakian categories – compactly generated symmetric monoidal exact k-linear
categories such that all compact objects are dualizable with endomorphisms of the
unit given by k.

A more modern perspective on Tannaka duality studies the functor taking a
scheme X to its category of quasicoherent sheaves QCoh(X). We state the most
general results established at the level of spectral algebraic stacks, which are as
follows.

Theorem 1.4 (Bhatt–Halpern-Leinster; [BHL17, Thm. 1.4]). Let X be a Noether-
ian spectral algebraic stack with quasi-affine diagonal. Then for any affine spectral
scheme S, the the association f 7→ f∗ gives a fully faithful embedding MorSpStk(S,X)
into the functor category of strongly symmetric monoidal colimit-preserving functors
D(X) to D(S).

Theorem 1.5 (Stefanich; [Ste23, Thm. 1.0.3]). Let X be a quasicompact spectral
geometric stack with quasiaffine diagonal and Y any spectral geometric stack. Then
the association f 7→ f∗ provides an equivalence between the animae of maps from
Y to X and the animae of strongly symmetric monoidal colimit-preserving functors
from the connective objects of QCoh(X) to the connective objects of QCoh(Y ).

The preceding results then suggest that one could establish a duality between
(algebraic) geometry and category theory, categorifying the dualities discussed at
the begining of this lecture. In particular, one asks the following question:

Question 1.6. Can one produce a theory of algebraic geometry from stable pre-
sentably symmetric monoidal categories C ∈ PrLSt?

Observe there are many categories in PrLSt, some of them poorly “algebraically
behaved” such as the categories associated to the theory of Faltings’ almost mathe-
matics and categories of a functional-analytic nature where one the algebraic tensor
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product must be completed. Examples of the latter type of categories include the
ind-Banach spaces of Ben-Bassat, et. al. and analytic rings of Clausen-Scholze.

Consider the generalization of the schema of (1.1) and (1.2) first considered by
Deligne.

Question 1.7. Fix C a symmetric monoidal category. Can one do algebraic geom-
etry “relative to C”

(1.3) StkC AffC CAlg(C)
sheaves of groupoids formally dual

by declaring the category of C-affine schemes AffC to be formally dual to the full
subcategory spanned by the commutative algebra objects of C and form a category of
C-stacks by taking sheaves of groupoids with respect to an appropriate Grothendieck
topology?

Remark 1.8. Already one can define the spectrum of a commutative algebra object
of a symmetric monoidal category, following work of Balmer [Bal05].

In the functional analytic contexts previously discussed, the above analogy gives
rise to a good notion of (higher) analytic geometry. In particular, the notion allows
for the definition of quasicoherent sheaves in settings where this was not previously
possible and finiteness hypotheses were required. Even better, we can work internal
to PrLSt as for each A ∈ CAlg(C) for C symmetric monoidal (and some hypotheses on

C), ModA ∈ CAlg(PrLSt).

(1.4) ?? Aff1 CAlg(PrLSt)
sheaves of groupoids formally dual

In this setting, Gaitsgory-Ryozenblum have already established the appropriate no-
tion of 1-affine stacks as the formal dual of stable presentably symmetric monoidal
categories, but it is more difficult to establish what the correct notion of geometry
is here. Two main issues arise:

• The geometry here seems uncontrollable as there are too many examples.
• There is not any reason a good notion of duality should hold a priori as
taking quasicoherent sheaves might not see enough information.

In fact, we can observe that the “stackier” an object gets, the less the category of
quasicoherent sheaves sees.

Example 1.9. Let B2Gm = [∗/[∗/Gm]]. There is an equivalence of derived cate-
gories of quasicoherent sheaves D(B2Gm) ≃ D(∗) to the derived category of quasi-
coherent sheaves on the point.

The object B2Gm considered in Example 1.9 is not very exotic — it is closely
related to the theory of Brauer groups and Azumaya algebras. Recall that maps
X → B2Gm for classical schemes classify Azumaya algebras A which can equiva-
lently be considered as elements of the Brauer group. To any Azumaya algebra A,
we can consider its category of modules ModA(QCoh(X)) which is a locally trivial
QCoh(X)-linear category.
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More generally, we can consider the association A 7→ PrLA = ModD(A)(Pr
L) where

D(A) is the derived (∞-)category of the (animated) ring A and by descent define

X 7→ PrLX = ModD(X)(Pr
L) which satisfies EndPrLX

(1) = D(X).

This captures some higher information that we wish to see.

Example 1.10. There exists a tautological invertible object in PrLB2Gm
such that

for any f : X → B2Gm classifying an Azumaya algebra A, the invertible object of
PrLB2Gm

pulls back to a distinguished invertible object in ModA(D(X)).

However, this is at times not enough.

Example 1.11. PrLB2Gm
≃ PrLD(∗) which follows formally from Example 1.9.

The solution, then, is to work with presentable (∞, n)-categories, which were first
defined by Stefanich [Ste20], and further developed by Aoki [Aok25]. First recall
the following variation of a definition of Lurie.

Definition 1.12 (κ-Presentable ∞-Category). Let κ be a regular cardinal. The
category of κ-presentable ∞-categories is the category with objects κ-compactly
generated presentable∞-categories and morphisms those colimit preserving functors
preserving κ-compact objects.

A key insight, then, is that the category of κ-presentable categories is a commu-
tative algebra in itself.

Proposition 1.13 (Aoki; [Aok25, Prop. 2.3]). Let κ be a regular cardinal. Then

PrLκ is an object of CAlg(PrLκ).

By iteratively taking module categories, we can make the following definition.

Definition 1.14 (κ-Presentable (∞, n)-Category). Let κ be a regular cardinal. Set

1PrL to be PrL and define inductively for n ≥ 1

(1.5) (n+ 1)PrLκ = ModnPrLκ(Pr
L
κ).

Remark 1.15. In most cases, it suffices to consider κ = ω which gives rise to
compactly generated presentable categories. We will at most need to work with
ω1-presentable categories which includes, for example, the category of sheaves on
the unit interval.

Convention 1.16. We will henceforth work ω1-small, surpressing all ω1’s from the
notation.

Using that for a geometric object X we can make a similar definition.

Definition 1.17 (κ-Presentable X-Linear (∞, n)-Category). Let X be a geometric

object and D(X) its category of quasicoherent sheaves. Set 0PrLX = D(X) and
define recursively for n ≥ 1

(1.6) (n+ 1)PrLX = ModnPrLX
(PrL).
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Remark 1.18. Note the difference in indexing convention: PrLX being a module

category over D(X) is a presentable (∞, 2)-category and more generally nPrLX ∈
(n+ 1)PrL.

In particular, for any geometric object X, we can define a sequence

D(X),PrLX , 2PrLX , . . .

where End(n+1)PrLX
(1) ≃ nPrLX , that is, endomorphisms of the unit object of each

category recovers the immediately preceding category in the sequence. This moti-
vates the notion of a Stefanich ring.

The instructor re-
marks that this is
a mild generaliza-
tion of commutative
rings.

Definition 1.19 (Stefanich Ring). A Stefanich ring is a sequence (A0, A1, . . . ) where

A0 ∈ CAlg(Sp) and An ∈ CAlg(nPrL) for each n ≥ 1 such that there are symmetric
monoidal equivalences EndAn(1) ≃ An−1.

Denote StRing to be the category of Stefanich rings with morphisms those that
make the obvious ladder-shaped diagram commute.

Remark 1.20. This notion was previously introduced by Stefanich under the name
of categorical spectrum, where taking endomorphisms of the unit at each stage can
be thought of as a delooping operation. The instructor has adopted this nomencla-
ture to avoid confusion with the Zariski spectrum and related constructions.

Example 1.21. Recall that an analytic ring is a pair (A▷,ModA) where A▷ is an
animated condensed ring and ModA ⊆ ModA▷ a full subcategory of ModA▷ which
contains A▷ and satisfies certain additional properties. A morphism of analytic
rings is a morphism of condensed rings A▷ → B▷ such that the restriction of scalars
functor ModB → ModA▷ has essential image in ModA. Analytic rings form an
evident category, so we can define the category of analytic stacks to be the category
PSh(AnRing,Ani)[W−1], the localization of the presheaf category at morphisms that
induce isomorphisms on all Stefanich rings.

Remark 1.22. Example 1.21 resolves an error in the definition of an analytic stack
as presented in [CS23].

While there are still too many examples to consider explicity within StRing, the
issue of duality completely dissapears within this new formalism of Stefanich rings.

Theorem 1.23 (Scholze-Stefanich). The category StRingOpp is1 an (∞, 1)-topos.

Remark 1.24. For usual derived and animated rings, the “Grothendieck topology”
here is closely related to the notion of descendability as established by Matthew
[Mat16].

Definition 1.25 (Gestalten). The category Gest of Gestalten2 (sg. Gestalt) is the

topos StRingOpp.

1Modulo minor technicalities.
2The instructor chose this name with Stefanich due to its German meaning as “shape” or “form”. They

consider it fortuitous that the English meaning as “a whole more than a sum of its parts” also captures
what they envision for this theory.
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Note that for any A ∈ CAlg(Sp) we can form its Gestalt

Gest(A) = (A,ModA,Pr
L
A, . . . )

which is an object of the topos Gest of Gestalten, and thus can be thought of as a
geometric object, following the dictum of thinking of objects of topoi as geometric.

Moreover, many theories such as analytic stacks (and thus the geometric theories
it captures) as well as classical/derived/spectral algebraic goemetry embed into Gest,
albeit not fully faithfully. This is a feature and not a bug, as we would expect certain
morphisms of geometric objects to be identified in Gest.

Example 1.26. Let W be the wild Betti sheaves of [Sch25]. Its Gestalt Gest(W)
has a nontrivial (R>0)Betti-torsor over Gest(S), where (R>0)Betti is the Betti stack of
R>0.

In fact, for C a known category of geometric objects andD a six-functor formalism
thereon, it is oftentimes the case that D factors over certain analytic stacks

C PrLSt

AnStk

Gest

D

QCoh

It is true, however, that any six-functor formalism will factor over Gestalten, as
illustrated by (a retelling of) the following result of Aoki in conjunction with the
notion that motivic homotopy theory SH is in some sense the initial six-functor
formalism.

Theorem 1.27 (Aoki). Let SH be Morel-Voevodsky’s motivic stable homotopy
theory. Gest(SH) admits a moduli-theoretic description such that X → Gest(SH)
corresponds to a ringgestalt (ring object in Gest) R such that R is 1-affine in the
sense of Gaitsgory-Ryozenblum, cohomologically smooth, contractible, and admits
a stratification.

This course will seek to show that this is indeed a workable definition, and to
study some examples.
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